POLITECHNIKA SWIETOKRZYSKA

Aplikacje mobilne — wyktad
7

Funkcje urzadzenia i uprawnienia w Expo/React
Native

Mateusz Pawetkiewicz
1.10.2025

1. Uprawnienia w Expo (Permissions)

Aplikacje mobilne czesto muszg uzyska¢ uprawnienia uzytkownika na dostep do wrazliwych
funkcji urzadzenia (np. aparatu, lokalizacji, galerii zdje¢). W Expo i React Native uzyskiwanie
uprawnien odbywa sie za pomocg odpowiednich modutéw Expo. Dawniej Expo oferowato
uniwersalny modut expo-permissions, jednak od SDK 41 zostat on oznaczony jako przestarzaty
na rzecz metod w poszczegdlnych modutach. Oznacza to, ze zamiast uzywac np.
Permissions.askAsync(Permissions. CAMERA) obecnie wywotujemy
Camera.requestCameraPermissionsAsync() lub analogiczne metody w module, ktérego uprawnienie
dotyczy. Kazdy modut Expo (kamera, lokalizacja, biblioteka mediéw, powiadomienia itd.)
udostepnia wtasne funkcje do sprawdzania i proszenia o wymagane zgody.

Zadanie uprawnien (request): Wiekszo$¢ modutéw Expo udostepnia asynchroniczng metode
request...PermissionsAsync(). Wyswietla ona natywne okienko systemowe z prosbg o pozwolenie.
Przyktadowo, aby uzyskac¢ dostep do aparatu, uzywamy:

import { Camera } from 'expo-camera’;

const { status } = await Camera.requestCameraPermissionsAsync();
if (status !=="granted') {

alert('Brak dostepu do aparatu!');

return;

}

// Uprawnienie przyznane — mozna korzystac z aparatu

Podobnie dziata np. Location.requestForegroundPermissionsAsync() dla lokalizacji czy
MediaLibrary.requestPermissionsAsync() dla biblioteki zdjec¢ (galerii). Gdy aplikacja wywofa taka
funkcje po raz pierwszy, system (Android lub iOS) wyswietli uzytkownikowi okno z prosba o
zgode.

Sprawdzanie statusu (getPermissionsAsync): Kazdy modut posiada réwniez metode
get...PermissionsAsync(), ktéra umozliwia sprawdzenie obecnego statusu uprawnienia bez
wyswietlania okienka. Zwracany status to zwykle jedna z wartosci: "granted" (przyznane),
"denied" (odmowione) lub "undetermined" (jeszcze nie pytano). Przyktad uzycia:

const perm = await Camera.getCameraPermissionsAsync();
console.log(perm.status); // np. 'granted’, 'denied' lub 'undetermined'

Czesto mozna najpierw wywotaé getPermissionsAsync() — jesli zwréci, ze status to "undetermined",
wtedy wywotaé requestPermissionsAsync(). Jednak wywotanie request... od razu jest rowniez
poprawne — jezeli uprawnienie byto juz nadane wczesniej, funkcja zwrdci od razu status
"granted" bez ponownego pytania uzytkownika.

Dedykowane moduty i uprawnienia: Ponizej wymieniono kluczowe moduty Expo i
odpowiadajgce im uprawnienia:

¢ Kamera (expo-camera) — wymaga uprawnienia do aparatu (Camera); przy nagrywaniu
video z dzwiekiem potrzebny tez dostep do mikrofonu. Metody:
Camera.requestCameraPermissionsAsync(), Camera.requestMicrophonePermissionsAsync().

¢ Biblioteka Medidw (expo-media-library) — dostep do galerii zdje¢ na urzadzeniu.
Uprawnienie do odczytu/zapisu zdjec (i filmow) na urzadzeniu. Metody:
MediaLibrary.requestPermissionsAsync() (na iOS domyslnie prosi o odczyt i zapis; mozna
rozdzieli¢ przez parametr writeOnly).

e Wybieranie obrazéw (expo-image-picker) — modut ten wewnetrznie korzysta z
uprawnien kamery lub biblioteki mediéw. Posiada metody:
ImagePicker.requestCameraPermissionsAsync() oraz
ImagePicker.requestMedialLibraryPermissionsAsync() do pobrania zgdd od uzytkownika.

e Lokalizacja (expo-location) — wymaga pozwolenia na lokalizacje: foreground (podczas
uzywania aplikacji) i opcjonalnie background (w tle) — o tym nizej. Metody:
Location.requestForegroundPermissionsAsync(), Location.requestBackgroundPermissionsAsync().

e Powiadomienia (expo-notifications) — na iOS wymagane jest uzyskanie zgody na
wyswietlanie powiadomien. Na Androidzie do Android 12 wigcznie zgoda nadawana
byta automatycznie przy instalacji, ale od Androida 13 réwniez wprowadzono
runtime permission na powiadomienia. Metoda: Notifications.requestPermissionsAsync()
(mozna przekazac opcje typu alert/dZwiek/ikonka odznaki do wyswietlania).

Rdéznice miedzy platformami (Android vs iOS)
Uprawnienia dziafajg nieco inaczej na Androidzie i iOS:

e i0S: Kazde zadanie uprawnien musi by¢ opatrzone wyjasnieniem w pliku Info.plist
aplikacji, dlaczego potrzebujemy danej zgody. W Expo konfigurujemy to w app.json
lub przez pluginy — np. dla aparatu klucz NSCameraUsageDescription, dla lokalizacji
NSLocationWhenlnUseUsageDescription itp. Domys$Ine komunikaty sg dodawane
automatycznie przez Expo, ale powinno sie je dostosowac do kontekstu aplikacji.
Uzytkownik na iOS moze przyznaé uprawnienie (Allow) lub odmoéwic (Don't Allow) za
pierwszym razem — jesli odmodwi, kolejne wywotania requestPermissionsAsync() nie
pokazg juz ponownie dialogu, a status pozostanie "denied" (iOS zaktada, ze
uzytkownik nie chce by¢ ponownie pytany). W takiej sytuacji mozna jedynie
zasugerowac uzytkownikowi zmiane ustawien recznie. Niektére uprawnienia na iOS
majg rézne poziomy: np. lokalizacja ma When In Use (tylko podczas uzywania
aplikacji) vs Always (rowniez w tle). Poproszenie o background location wymaga
najpierw zgody na "podczas uzycia", a potem dodatkowego dialogu o "Always". iOS
moze tez oferowac opcje udostepnienia przyblizonej lokalizacji zamiast doktadnej (od
i0S 14) — aplikacja nie ma na to wptywu poza okresleniem wymogu Accuracy (system
i tak pozwoli uzytkownikowi zdecydowaé czy chce udostepnia¢ doktadne dane GPS).

e Android: Uprawnienia dzielg sie na zwykte i "niebezpieczne" — te drugie wymagaja
zgody runtime. Android pozwala uzytkownikowi zaznaczy¢ "Nie pytaj ponownie" przy
odmawianiu — wéwczas metoda request... zwrdci status "denied" oraz pole canAskAgain =
false, co oznacza, ze nie wolno juz pokazywac dialogu (kolejne prosby beda
automatycznie odrzucane). Trzeba wtedy, podobnie jak na iOS, poprowadzi¢
uzytkownika do ustawien aplikacji. Android od wersji 11 wprowadzit bardziej
szczegotowe uprawnienia do plikow i mediow: np. osobno READ_MEDIA_IMAGES i
READ_MEDIA_VIDEO (zamiast ogdlnego READ_EXTERNAL_STORAGE), a od Androida
13 pojawito sie natywne okno systemowego selektora zdjeé jako preferowana
metoda. Expo ImagePicker w najnowszych wersjach dostosowat sie do tych zmian —

jesli korzystamy z systemowego picker’a, mozemy ograniczy¢ zakres dostepu do
medidéw zamiast prosi¢ o petne uprawnienie do czytania wszystkich plikow (to
pomaga spetni¢ wymagania Google Play dotyczgce dostepu do zdjeé). W praktyce,
wywotujac ImagePicker.launchimagelLibraryAsync na Androidzie 13+, aplikacja moze nie
potrzebowac w ogdle zgody READ_MEDIA jesli uzyty zostanie systemowy picker —
Expo automatycznie moze to obstuzy¢ w nowszych SDK. Innym przyktadem zmian na
Androidzie 13 jest uprawnienie POST_NOTIFICATIONS — teraz aplikacja musi poprosic¢
o zgode na wyswietlanie powiadomien push (wczes$niej uzytkownik zgadzat sie
instalujgc aplikacje). Expo Notifications.requestPermissionsAsync() uwzglednia to i poprosi o
te zgode na Androidzie 13+.

¢ Automatyczna konfiguracja: Expo stara sie automatycznie dodac wiekszosc
niezbednych deklaracji uprawnien do natywnych plikdw konfiguracyjnych. Gdy
dodajemy modut jak expo-camera czy expo-location i zbudujemy aplikacje, to wymagane
<uses-permission> W AndroidManifest.xml czy klucze Info.plist sg zwykle dodawane
przez tzw. config plugins Expo. Na przykfad, do AndroidManifest zostanie wpisane
android.permission.CAMERA przy uzyciu expo-camera, a do Info.plist dodany zostanie
domysliny tekst "Allow S(PRODUCT_NAME) to access your camera”. Programista
moze dodatkowo usunaé niechciane uprawnienia (jesli pakiet dodaje cos$ zbednego)
za pomocg android.blockedPermissions W app.json — np. zablokowanie RECORD_AUDIO jesli
uzywamy aparatu tylko do zdje¢, aby nie prosié niepotrzebnie o mikrofon.

Dobre praktyki UX przy proszeniu o uprawnienia

Prosba o uprawnienia to moment, w ktérym uzytkownik moze zdecydowac, czy zaufa naszej
aplikacji w danym zakresie. Kilka wskazéwek, jak robié to z poszanowaniem UX:

¢ Pytaj tylko wtedy, gdy to potrzebne: Nie wyswietlaj szeregu dialogdw zaraz po
uruchomieniu aplikacji. Zamiast tego, popros o dane uprawnienie tuz przed funkcja,
ktora go wymaga. Np. przed zrobieniem zdjecia pokaz dialog prosby o aparat, a przed
zapisaniem pliku — dialog dostepu do plikédw. Uzytkownik lepiej rozumie kontekst
prosby, gdy jest ona powigzana z jego akcjg (np. tapnat ,,Zréb zdjecie” to logiczne, ze
pojawia sie pytanie o aparat).

¢ Komunikuj sie jasno i zwiezle: Systemowe okno i tak wyswietli tekst z
Info.plist/Manifestu, wiec upewnij sie, ze ten komunikat jest zrozumiaty (np. ,,Pozwdl
aplikacji XYZ na dostep do aparatu, aby umozliwi¢ robienie zdje¢”). W samym
interfejsie aplikacji nie zaszkodzi zapowiedzie¢ uzytkownikowi, dlaczego pojawi sie
pytanie. Mozna np. mieé wtasny ekran z informacjg ,Aby doda¢ zdjecie,
potrzebujemy dostepu do Twojego aparatu. Za chwile wyswietli sie prosba
systemowa.” — to nie zawsze konieczne, ale bywa pomocne, zwtaszcza przy bardziej
wrazliwych danych.

o Szanuj decyzje uzytkownika i oferuj alternatywe: Jesli uzytkownik odmowi
uprawnienia, nie zmuszaj go w kotko do akceptacji. Zamiast tego, zaadaptuj sie.
Przyktadowo, jesli nie ma zgody na lokalizacje GPS — umozliw uzytkownikowi reczne
wpisanie adresu lub po prostu pokaz statyczng mape domysinej lokacji. Gdy brak
dostepu do aparatu — pozwdl wybrac¢ zdjecie z galerii (bo by¢ moze to uprawnienie
chetniej przyzna), albo przekaz komunikat, ze funkcja robienia zdjeé¢ bedzie

niedostepna. Wazne, by aplikacja nadal byta uzyteczna, nawet z ograniczonymi
uprawnieniami.

e Ponowne proby i ustawienia: Jesli uzytkownik odmowit i zaznaczyt "nie pytaj
ponownie" (Android) lub po prostu odméwit na iOS (gdzie domyslinie to oznacza "nie
pytaj ponownie"), jedyng opcjg jest poproszenie go o zmiane zdania w ustawieniach
systemowych. Mozesz wyswietli¢ komunikat w stylu: ,Funkcja X jest wytgczona,
poniewaz nie nadano uprawnien. Mozesz je wtgczy¢ w ustawieniach aplikacji.” i np.
przycisk ,,Otwérz Ustawienia”. Expo nie ma specjalnego APl do otwierania ustawien,
ale mozna skorzystac z Linking.openSettings() z React Native, ktére przekieruje do
ustawien aplikacji. Nie bombarduj jednak uzytkownika takimi monitami — pokazuj je
tylko jesli funkcja jest naprawde kluczowa w danym momencie.

o Btedy i wyjatki: Zawsze obstuguj obietnice (Promise) z funkcji pytajgcych o
uprawnienia. Uzytkownik moze nie tylko wybrac , Allow” lub ,,Deny”, ale czasem
dialog moze zostaé przerwany, lub nastgpi inny btad. Kod powinien przewidywaé, ze
requestPermissionsAsync() moze rzucié¢ wyjatek lub zwrdcié obiekt ze statusem, ktdry nie
jest "granted". Dlatego wstawiaj warunki if (status !=="granted') i reaguj na nie (np.
przerwij wykonywanie danej akcji jak pokazano wyzej w przyktadzie z aparatem).
Zapobiegnie to sytuacjom, w ktérych aplikacja préobuje uzyc zasobu bez uprawnien i
np. otrzymuje btad lub (co gorsza) zawiesza sie.

Stosujgc powyzsze zasady, zwiekszamy szanse, ze uzytkownik przyzna uprawnienia (bo
rozumie po co sg potrzebne), a nawet jesli nie — aplikacja nadal bedzie dziata¢ sensownie,
zamiast frustrowadé komunikatami o btedach.

2. Kamera, galeria, pliki — multimedia w Expo

W tej czesci omdéwimy, jak w Expo/React Native korzystac z aparatu urzadzenia, jak uzyskac
zdjecia z galerii, jak modyfikowac i przechowywac pliki oraz jak je udostepniad.
Wykorzystamy do tego nastepujgce biblioteki Expo: expo-camera, expo-image-picker, expo-image-
manipulator, expo-file-system, expo-media-library oraz expo-sharing. Wszystkie te bibliotki sg czescia
ekosystemu Expo SDK (w wersjach aktualnych na rok 2025).

2.1 Korzystanie z aparatu (expo-camera)

Modut expo-camera pozwala na obstuge aparatu fotograficznego (zaréwno przedniego, jak i
tylnego) bezposrednio w aplikacji. Umozliwia wyswietlenie podgladu na zywo z kamery jako
komponent React oraz wykonanie zdjecia lub nagranie wideo. Mozliwe jest takze
dostosowanie parametrow aparatu (zoom, ostros¢, balans bieli, wigczenie lampy btyskowej
itp.) oraz skanowanie kodéw kreskowych/QR w czasie rzeczywistym.

Instalacja: Aby z niego skorzysta¢, instalujemy paczke komendg npx expo install expo-camera.
Nastepnie importujemy potrzebne elementy, np. komponent Camera lub hook
useCameraPermissions itp. Poniewaz aparat to funkcja wymagajgca uprawnien prywatnosci,
przed uzyciem musimy uzyskac zgode uzytkownika na dostep do kamery (oraz mikrofonu,
jesli planujemy nagrywac audio wraz z wideo).

Podglad z kamery: expo-camera udostepnia komponent React <Camera> do wstawienia w
drzewo renderowania. Typowe uzycie to umieszczenie go na czesci (lub catosci) ekranu wraz
z przyciskiem wyzwalacza migawki. Przyktad uproszczonego komponentu korzystajgcego z
kamery:

import React, { useRef, useState, useEffect } from 'react’;
import { Text, View, TouchableOpacity, Image, StyleSheet } from 'react-native';
import { Camera } from 'expo-camera’;

export default function CameraExample() {
const cameraRef = useRef(null);
const [hasPermission, setHasPermission] = useState(null);
const [photo, setPhoto] = useState(null); // URI zrobionego zdjecia do podgladu

useEffect(() => {
(async () =>{
const { status } = await Camera.requestCameraPermissionsAsync();
setHasPermission(status === 'granted');
N;
L)

if (hasPermission === null) {

return <Text>Prosze czekac...</Text>; // w trakcie pytania o uprawnienie
}
if (hasPermission === false) {

return <Text>Brak dostepu do aparatu.</Text>; // odmowa uprawnien

}

const takePhoto = async () => {
try {
const result = await cameraRef.current.takePictureAsync({
quality: 0.8, // jakos¢ zdjecia (0-1)
base64: false, // mozna true jesli chcemy base64 (np. do podgladu miniatury)
skipProcessing: false // domyslnie false, jesli true to pomija post-process (np. rotacje)
1
setPhoto(result.uri); // zapisz URI zdjecia do stanu
} catch (e) {
console.error('Btgd wykonania zdjecia', e);
}
b

return (
<View style={styles.container}>
{photo ? (
// Jesli zrobiono zdjecie, pokazujemy jego podglad
<>
<Image source={{ uri: photo }} style={styles.preview} />
<View style={styles.buttons}>
<TouchableOpacity onPress={() => setPhoto(null)} style={styles.button}>
<Text>Retake</Text>
</TouchableOpacity>
<TouchableOpacity onPress={() => alert('Upload zdjecia...")} style={styles.button}>
<Text>Wyslij</Text>
</TouchableOpacity>
</View>
</>

)i (

// Jesli nie zrobiono jeszcze zdjecia, wyswietlamy podglad z kamery i przycisk

<>
<Camera style={styles.camera} ref={cameraRef} type={Camera.Constants.Type.back} />
<TouchableOpacity onPress={takePhoto} style={styles.captureButton}>

<Text style={styles.captureText}>Zrob zdjecie</Text>

</TouchableOpacity>

</>

)}

</View>
);
}

const styles = StyleSheet.create({

container: { flex: 1},

camera: {flex: 1},

captureButton: {
position: 'absolute’, bottom: 20, alignSelf: 'center’,
padding: 15, backgroundColor: '#fff', borderRadius: 5

b

captureText: { fontWeight: 'bold' },

preview: { flex: 1},

buttons: {
position: 'absolute’, bottom: 20, width: '100%', flexDirection: 'row’,
justifyContent: 'space-around'

5
button: { padding: 10, backgroundColor: '#ddd', borderRadius: 5 }

N;

Powyzszy kod ilustruje podstawy: pytamy o uprawnienia do aparatu (w useEffect na starcie
komponentu), nastepnie jesli brak uprawnien —informujemy o tym. Gdy mamy zgode,
wyswietlamy <Camera ref={...}>. Uzywamy referencji cameraRef zeby odwotac sie do metody
takePictureAsync() komponentu kamery. Po naci$nieciu przycisku "Zréb zdjecie" wykonujemy
zdjecie i otrzymujemy obiekt zawierajgcy m.in. uri zdjecia. Uzywamy tego URI, aby pokazaé
podglad (<Image source={{ uri: photo }} />). Dodalismy tez dwa przyciski: "Retake" (usuwa podglad
i wraca do trybu kamery) oraz "Wyslij" (tu tylko wyswietlamy alert symulujacy wysytke).

Uwagi: takePictureAsync pozwala podaé opcje takie jak jakos¢ (0-1), czy zwrdcié obraz jako
baseb4, czy pomingé przetwarzanie. Na iOS np. expo-camera automatycznie obraca zdjecie
zgodnie z orientacjg urzadzenia; skipProcessing: true moze poming¢ te kroki (przydatne np. do
szybszego zrobienia zdjecia kosztem braku rotacji). Zdjecie wynikowe zostaje zapisane
automatycznie w pamieci podrecznej aplikacji (tzw. cache). W result.uri otrzymujemy Sciezke
do pliku (np. file:///data/user/0/.../somefilename.jpg). Je$li chcemy zachowaé to zdjecie na diuzej,
powinnismy przenie$é je w trwate miejsce (np. do FileSystem.documentDirectory lub do galerii
urzadzenia — o tym w sekcji 2.4).

Mozemy takze zmieniac typ kamery (przednia/tylna) dynamicznie — w naszym przyktadzie
uzyliSmy Camera.Constants.Type.back. Mozna np. dodac przycisk "Switch camera", ktéry ustawia
type na Camera.Constants.Type.front lub back. Expo-camera obstuguje réwniez lampe btyskowg
(flashMode), zoom (zoom), autofocus itd., poprzez propsy przekazywane do komponentu
<Camera>.

2.2 Wybor zdjecia z galerii lub szybkie zdjecie (expo-image-picker)

Nie kazda aplikacja potrzebuje petnego podgladu kamery i wiasnego interfejsu do robienia
zdjed. Czasem wygodniej jest skorzysta¢ z natywnego selektora mediéw — takiego, ktéry
pozwala uzytkownikowi wybraé istniejgce zdjecie z galerii, albo uruchamia domysing
aplikacje aparatu, a po zrobieniu zdjecia wraca do naszej aplikacji. Do tego stuzy expo-image-
picker.

Instalacja: npx expo install expo-image-picker. Ten modut kryje w sobie zaréwno funkcje do
otwarcia galerii urzadzenia, jak i do uruchomienia natywnej aplikacji aparatu. W obu
przypadkach po wykonaniu akcji (wybér zdjecia lub zrobienie nowego) wynik jest
przekazywany do naszej aplikacji.

Uprawnienia: W przypadku expo-image-picker musimy zadbaé o odpowiednie uprawnienia:

o Jesli chcemy wybierac pliki z biblioteki zdjeé, potrzebujemy zgody na dostep do
mediow (Photo/Media Library). Na Androidzie (do 12) byto to
READ/WRITE_EXTERNAL_STORAGE, na Androidzie 13 — wspomniane
READ_MEDIA_IMAGES, a na iOS — dostep do Photos (z opisem w Info.plist). Expo-
image-picker udostepnia metode requestMediaLibraryPermissionsAsync() do wywotania
przed otwarciem picker’a. Mozna przekazac writeOnly: true jesli planujemy tylko
zapisywac (np. zapisac zdjecie do galerii) bez czytania istniejgcych — wtedy na iOS np.
poprosi tylko o ograniczone uprawnienie zapisu.

e Jedli chcemy uzy¢ aparatu poprzez image-picker (czyli otworzyé natywng apke
aparatu), potrzebujemy uprawnienia do Camera. Tutaj uzywamy
requestCameraPermissionsAsync() Z expo-image-picker (wewnatrz dziata podobnie jak w
expo-camera). Dodatkowo, na starszych Androidach i iOS 10 potrzebny byt tez dostep
do "camera roll" (biblioteki), ale na nowszych systemach z reguty natywna aplikacja
aparatu zapisuje zdjecie do swojej lokalizacji i zwraca do naszej appki bez
dodatkowych wymagan — expo-image-picker abstrakcyjnie tym zarzadza.

Uzycie: expo-image-picker oferuje dwie gtéwne funkcje:

e ImagePicker.launchimageLibraryAsync(options) — otwiera systemowg galerie/pliki, pozwala
wybrac zdjecie lub film.

e ImagePicker.launchCameraAsync(options) — otwiera aparat (natywny Ul do zrobienia
zdjecia).

Obie funkcje zwracajg Promise, ktéry po zakorczeniu zwraca obiekt wyniku. W najnowszych
wersjach expo-image-picker wynik ma strukture zawierajgcg pole canceled (boolean) oraz
assets (tablica obiektéw media). Dla pojedynczego zdjecia bedzie to tablica
jednoelementowa, z obiektem posiadajgcym m.in. uri (Sciezka do pliku zdjecia), width, height,
type (typ medidw), ewentualnie base64 (jesli zazgdano) i exif (jesli zazgdano metadanych). Dla
prostoty, mozemy traktowac to tak, ze dostajemy result.assets[0].uri jako sciezke do wybranego
zdjecia.

Przyktad: uzytkownik chce wybra¢ awatar z galerii:

import * as ImagePicker from 'expo-image-picker’;

async function picklmageFromGallery() {
// Najpierw upewnijmy sie, ze mamy uprawnienie do czytania mediéw
const perm = await ImagePicker.requestMedialLibraryPermissionsAsync();
if (!perm.granted) {
alert("Aplikacja potrzebuje dostepu do Twoich zdje¢, aby wybraé obraz.");
return;
}
// Otwérz galerie i pozwdl uzytkownikowi wybrac obraz
const result = await ImagePicker.launchimageLibraryAsync({
mediaTypes: ImagePicker.MediaTypeOptions.Images, // tylko zdjecia (nie wideo)
allowsEditing: false, // true datoby mozliwos¢ przyciecia zdjecia w interfejsie systemowym
quality: 1 // skala 0-1, 1 = oryginalna jakos¢
1
if (result.canceled) {
console.log("Uzytkownik anulowat wybér obrazka");
return;
}
const selectedAsset = result.assets[0];
console.log("Wybrano zdjecie:", selectedAsset.uri,
"wymiary:", selectedAsset.width, "x", selectedAsset.height);
// tutaj mozna np. ustawic¢ stan z tym zdjeciem, zeby wyswietli¢ podglad

W powyzszym fragmencie najpierw zgdamy zgody (pokazane jest obstuzenie sytuacji, gdy
uzytkownik odmowi — wyswietlamy alert i przerywamy). Jesli zgoda jest, wywotujemy
launchimageLibraryAsync. W opcjach okreslamy, ze interesujg nas obrazy (nie np. filmy) i czy
pozwoli¢ na edycje. Opcja allowsEditing: true spowodowataby, ze po wybraniu zdjecia
uzytkownik dostatby mozliwos¢ przyciecia go (do kwadratu) w wbudowanym edytorze. Ta
funkcja korzysta z natywnych mechanizméw i np. na iOS zwrdéci zawsze obraz JPEG nawet
jesli zrédto byto HEIC, natomiast na Androidzie ma pewne ograniczenia (np. przy
allowsEditing:true i quality<1 animowane GIFy zostang zredukowane do statycznego obrazu). W
naszym przyktadzie wytgczamy edycje i pobieramy petng jakosé.

Analogicznie, mozemy zrobic¢ zdjecie z aparatu bez wbudowywania komponentu kamery:

async function takePhotoViaSystemCamera() {
// Upewnij sie o zgodzie na aparat:
const permCam = await ImagePicker.requestCameraPermissionsAsync();
if (IpermCam.granted) {
alert("Brak dostepu do aparatu.");
return;
}
// (Opcjonalnie: na Androidzie 10- prosba o MediaLibrary moze byc potrzebna
// ale expo-image-picker sam o to zadba jesli konieczne)
// Uruchom natywng aplikacje aparatu:
const result = await ImagePicker.launchCameraAsync({
allowsEditing: true,
quality: 0.5, // zmniejsz jakos$¢ do 50% dla mniejszego pliku
base64: false // mozna true jesli chcemy uzyskad tez base64 obrazu
1
if (Iresult.canceled) {
const photo = result.assets[0];

console.log("Zrobiono zdjecie:", photo.uri);
// np. ustaw zdjecie w stanie, aby wyswietli¢ podglad w Ul:
setPhotoUri(photo.uri);
}
}

Tutaj po uzyskaniu uprawnienia do kamery, wywotujemy launchCameraAsync. Natywny aparat
zostanie otwarty (poza naszg aplikacja, jako systemowy widok). Po zrobieniu zdjecia
uzytkownik zwykle ma opcje akceptuj lub ponéw (to zapewnia system). Gdy zaakceptuje,
wraca do naszej aplikacji, a launchCameraAsync rozwigzuje Promise zwracajgc obiekt zdjecia. W
tym przyktadzie wiaczyliSmy allowsEditing:true, co 0znacza, ze uzytkownik po zrobieniu zdjecia
dostanie mozliwos¢ np. przyciecia lub potwierdzenia zdjecia (na iOS pokaze okienko z
mozliwoscig przesuniecia/skalowania). Z ustawiong jakoscig 0.5 uzyskamy zdjecie
skompresowane (mniejszy rozmiar pliku, kosztem jakosci).

Co dalej z wybranym zdjeciem? W obu przypadkach (galeria lub aparat) otrzymujemy uri
pliku lokalnego. Mozemy od razu wyswietli¢ obraz (np. w <Image source={{uri: ...}} />), bo ten plik
jest lokalnie dostepny dla naszej aplikacji. Jesli to zdjecie ma by¢ wystane na serwer, mozna
je przekazaé dalej (np. w formularzu lub przez upload via fetch). Jesli chcemy je zapisa¢ do
pamieci trwatej aplikacji lub do galerii — patrz sekcja 2.4 ponize;j.

Uwaga dot. iOS (ograniczony dostep do zdje¢): Na iOS od wersji 14, gdy prosimy o dostep
do biblioteki, uzytkownik moze wybrac ograniczony dostep — czyli pozwolié tylko do
wybranych zdjeé. Expo-image-picker stara sie to obstuzy¢ — np. jesli uzytkownik da dostep
ograniczony, to przy prébie launchimagelibraryAsync pojawi sie natywne okno wybierania tych
dozwolonych zdjec. Dla dewelopera oznacza to, ze requestMedialibraryPermissionsAsync() moze
zwrdcié status "granted" nawet jesli dostep jest ograniczony, a pole accessPrivileges moze
wskazywac limited. W przypadku ograniczonego dostepu, uzytkownik moze nie méc wybraé
dowolnego zdjecia, tylko te wczesniej wybrane. W razie potrzeby mozna wykry¢
perm.accessPrivileges === "limited" i np. wyswietli¢ komunikat zachecajgcy do nadania petnego
dostepu w ustawieniach, jesli dana funkcjonalnos¢ tego wymaga.

2.3 Przycinanie i kompresja obrazéw (expo-image-manipulator)

Czesto po zrobieniu lub wybraniu zdjecia chcemy je przeksztatci¢ — np. zmniejszyé
rozdzielczos¢ (zeby zaoszczedzi¢ transfer danych przy wysytaniu), obrdci¢, przyciagé do
kwadratu lub zmieni¢ format/kompresje. Expo oferuje biblioteke expo-image-manipulator,
ktora pozwala te operacje wykonaé na urzadzeniu.

Instalacja: npx expo install expo-image-manipulator.
Biblioteka ta umozliwia manipulacje obrazem zapisanym w pliku lokalnym (lub base64).
Kluczowa funkcja (w starszym stylu API) to ImageManipulator.manipulateAsync(uri, actions,

saveOptions). Przyjmuje ona:

e uri— lokalizacje pliku zrédtowego (np. photo.uri zrobione aparatem lub wybrane z
pickera).

e actions —tablice obiektéw opisujgcych dziatania (np. resize, rotate, flip, crop). Kazdy z
tych obiektéw ma klucz okreslajacy operacje i wartosci.

e saveOptions — obiekt z opcjami zapisu wyniku (format pliku, kompresja, czy dotgczy¢
base64).

Funkcja zwraca Promise z obiektem zawierajgcym m.in. uri nowo utworzonego pliku (z
zmodyfikowanym obrazem), width, height i opcjonalnie base64 (jesli zazagdano).

Przyktad: zatézmy, ze chcemy wzig¢ zdjecie uzytkownika (np. zrobione aparatem) i
zmniejszyc¢ je oraz skompresowac przed wystaniem na serwer, aby ograniczy¢ rozmiar pliku.
Mozemy to zrobi¢ tak:

import * as ImageManipulator from 'expo-image-manipulator’;
// ... zatézmy ze mamy photo.uri z aparatu o rozdzielczosci np. 4000x3000

const manipResult = await ImageManipulator.manipulateAsync(
photo.uri,
[{ resize: { width: 1000 } }], // actions: zmien rozmiar do szerokosci 1000px, wysoko$¢ proporcjonalnie
{ compress: 0.7, format: ImageManipulator.SaveFormat.JPEG }
);
console.log("Nowy plik:", manipResult.uri, "rozmiar:",
manipResult.width, "x", manipResult.height);

Powyzej przekazujemy jedng akcje: resize do szerokos$ci 1000 pikseli (wysokos¢ zostanie
dobrana automatycznie, zachowujgc proporcje). W saveOptions ustawiamy compress: 0.7 (70%
jakosci, czyli umiarkowana kompresja JPEG) oraz format: JPEG (mozna tez PNG lub WEBP).
Wynikiem bedzie nowy plik JPEG o mniejszej rozdzielczosci, ktérego URI dostajemy w
manipResult.uri. Taki plik mozemy teraz np. wysyta¢ na serwer — bedzie znaczaco mniejszy niz
oryginalne zdjecie.

Inne akcje dostepne w ImageManipulator:

e rotate: degrees — obraca obraz o podany kat (90, 180, 270, ...).

o flip: FlipType.Horizontal lub FlipType.Vertical — lustrzane odbicie w poziomie lub pionie.

e crop: { originX, originY, width, height } — wycina prostokat z obrazu o podanych
wspoétrzednych poczgtkowych i rozmiarach. Np. by przycigé srodek obrazu do
kwadratu 1000x1000, musieliby$Smy obliczy¢ odpowiedni originX/Y.

o (Od SDK 49+) extend (rozszerzenie ptétna) — mniej typowe, pozwala np. dodac
margines wokét obrazka.

Nalezy zauwazy¢, ze manipulateAsync tworzy nowy plik przy kazdym wywotaniu (nie nadpisuje
oryginatu, bo i0S/Android majg mechanizmy cache’owania obrazéw po Sciezce). Jesli
wielokrotnie bedziemy manipulowaé, moze by¢ sens usuwania plikdw tymczasowych po
uzyciu (np. FileSystem.deleteAsync starych plikdw).

Nowy interfejs API: Dokumentacja Expo wspomina, ze od pewnego czasu manipulateAsync jest
oznaczone jako deprecated, a zalecane jest uzywanie nowego APl opartego o kontekst (hook
uselmageManipulator i obiekty obrazéow). Nowe APl pozwala tancuchowo wywotywac

manipulacje i ma nieco inny styl (bardziej obiektowy). Jednak dla prostych zastosowan (jak
powyzej) wcigz mozna $miato uzywac ImageManipulator.manipulateAsync, poniewaz jest proste i
skuteczne. W kontekscie tego wyktadu koncentrujemy sie na tej prostszej formie.

2.4 Zapisywanie plikow lokalnie (expo-file-system i expo-media-library)

Kiedy dysponujemy plikiem (np. zdjeciem) w aplikacji Expo, mozemy chcie¢ go zapisa¢ trwale
lub udostepni¢ uzytkownikowi poza aplikacjg. Mamy dwie gtéwne Sciezki:

e zapisac plik w wewnetrznym systemie plikow aplikacji (tzw. sandbox, niedostepny
bezposrednio z poziomu innych aplikacji),

e zapisac plik do publicznej biblioteki urzadzenia (np. zdjecie do galerii, plik do katalogu
publicznego), tak by uzytkownik mogt go zobaczy¢ poza nasza aplikacja.

Expo FileSystem: Biblioteka expo-file-system umozliwia dostep do systemu plikdw wewnatrz
sandboxu aplikacji. Domyslnie expo udostepnia $ciezki takie jak:

e FileSystem.documentDirectory — katalog trwaty dla aplikacji (dane tu pozostajg, dopodki
uzytkownik nie odinstaluje aplikacji lub ich sam nie usunie).

e FileSystem.cacheDirectory — katalog tymczasowy (cache), ktéry system moze czysci¢ w
razie potrzeby.

Funkcjami takimi jak FileSystem.moveAsync, copyAsync, writeAsStringAsync, readAsStringAsync,
deleteAsync itd., mozemy manipulowac plikami.

Przyktad: zrobilismy zdjecie aparatem i otrzymalisSmy np. photo.uri = "file:///.../Camera/abc.jpg"
(lokalizacja w cache Expo). Jesli chcemy je zachowa¢ np. w naszym folderze dokumentéw
pod nazwa "profile.jpg", mozemy to zrobic:

import * as FileSystem from 'expo-file-system’;

const sourceUri = photo.uri; // $ciezka zrédtowa (plik w cache)
const destUri = FileSystem.documentDirectory + "profile.jpg";
await FileSystem.copyAsync({ from: sourceUri, to: destUri });
console.log("Plik skopiowany do dokumentéw:", destUri);

Powyzsze skopiuje plik. Mozna uzyé moveAsync zamiast copyAsync, jesli chcemy przeniesé
(usungé z zrodta). W ten sposéb plik bedzie dostepny na przysztos¢ pod znanym nam
adresem (np. mozemy go potem wczytac i wyswietli¢ pézniej, nawet po ponownym
uruchomieniu aplikacji). Wewnetrzna pamiec aplikacji jest odizolowana — np. na Androidzie
to zwykle /data/data/<package>/files/..., na iOS Documents/... dla aplikacji — i nie pojawi sie to
automatycznie w galerii uzytkownika czy menedzerze plikow.

Expo MediaLibrary: Jesli chcemy, aby plik (np. zdjecie) trafit do galerii zdje¢ uzytkownika,
powinnismy uzy¢ expo-media-library. Ta biblioteka integruje sie z systemowg biblioteka
multimediow (aplikacja Zdjecia na iOS lub biblioteka medidéw na Androidzie). Pozwala m.in.
odczytywac zdjecia/albumy, ale takze zapisywaé pliki do albumu. Zeby z niej skorzystaé,
potrzebne jest uprawnienie do zapisu/odczytu medidw (o czym moéwilismy w sekcji
uprawnien). Zaktadamy, ze uzytkownik wyrazit zgode.

Aby zapisa¢ zdjecie do galerii, uzywamy funkcji MediaLibrary.createAssetAsync(uri). Np.:
import * as MediaLibrary from 'expo-media-library’;

const asset = await Medialibrary.createAssetAsync(photo.uri);
await Medialibrary.createAlbumAsync("MojaAplikacja", asset, false);

Pierwsza linia tworzy asset ze wskazanego pliku URI — to znaczy dodaje zdjecie do
systemowej bazy mediéw (w domysinym albumie, zazwyczaj Camera Roll). Zwraca obiekt
assetu (zawierajgcy m.in. unikalny ID, typ, URI itp.). Druga linia tworzy album o nazwie
»MojaAplikacja” i przenosi ten asset do niego (parametr false 0znacza, ze jesli album juz
istnieje, nie duplikuj pliku). Mozna poming¢ createAlbumAsync, jesli chcemy po prostu wrzucic¢
do domyslinej lokalizacji.

Expo-media-library automatycznie zajmie sie tym, zeby np. na iOS zapisa¢ obraz do Photos
(co uzytkownik zobaczy w aplikacji Zdjecia), a na Androidzie umiesci¢ plik w DCIM/ lub
Pictures/.

Uwaga: Od Androida 10+ wprowadzono koncept Media Store, wiec expo-media-library
korzysta z tego API by zapisywa¢ pliki. Wymaga to deklaracji uprawnien jak
READ/WRITE_MEDIA_IMAGES (co Expo robi automatycznie, cho¢ z uwagi na polityke Google,
jesli nasze uzycie jest sporadyczne, mozna rozwazy¢ uzycie systemowego pickera zamiast
petnych uprawnien). Niemniej, jesli potrzebujemy programowo zapisywac pliki, expo-media-
library jest wtasciwym narzedziem.

Podsumowujgc: expo-file-system stuzy do zarzgdzania plikami wewnatrz aplikacji (cache,
dokumenty), a expo-media-library pozwala na interakcje z galerig uzytkownika. W typowym
scenariuszu:

e uzywamy expo-camera lub image-picker -> dostajemy plik w cache,

o jesli uzytkownik zapisuje zdjecie — pytamy o zgode (jesli nie byta dana) i uzywamy
Medialibrary, by zapisaé do galerii,

o dodatkowo albo zamiast tego, mozemy trzymac zdjecie w sandboxie aplikacji (jesli to
np. prywatne dane tylko dla naszej aplikacji).

2.5 Udostepnianie plikdw (systemowy ,,share sheet” z expo-sharing)

Czesto chcemy umozliwié uzytkownikowi udostepnienie zdjecia lub pliku poprzez inne
aplikacje — np. wystac zdjecie mailem, poprzez komunikator, zapisa¢ na Dysku itp. Systemy
mobilne udostepniajg tzw. share sheet — standardowe okno ,,Udostepnij”, ktére pokazuje
liste aplikacji i akcji mozliwych dla danego pliku. W Expo mozemy wywotaé to okno przez
biblioteke expo-sharing.

Instalacja: npx expo install expo-sharing.
Expo-sharing ma bardzo prosty interfejs: najpierw warto sprawdzi¢, czy udostepnianie jest

dostepne przez Sharing.isAvailableAsync(). Na platformach mobilnych natywnych bedzie
dostepne zawsze; na web moze nie by¢ (Web Share API jest ograniczone). Nastepnie

uzywamy Sharing.shareAsync(url, options) — gdzie url to URI pliku lokalnego, ktéry chcemy
udostepnic.

Zatozmy, ze mamy Sciezke do obrazka imageUri (np. zdjecie zrobione aparatem, zapisane w
plikach aplikacji). Mozemy udostepnic je tak:

import * as Sharing from 'expo-sharing';

async function shareFile(uri) {
const canShare = await Sharing.isAvailableAsync();
if (lcanShare) {
alert("Udostepnianie nie jest dostepne na tej platformie");
return;

}

try {
await Sharing.shareAsync(uri);
console.log("Plik zostat udostepniony.");

} catch (error) {
console.error("Btgd udostepniania:", error);

}
}

Wywotanie shareAsync spowoduje otwarcie natywnego panelu udostepniania. Uzytkownik
zobaczy liste aplikacji, do ktérych moze wystac ten plik — np. na iOS pojawig sie ikonki
AirDrop, iMessage, Mail, Zapisywanie grafiki itd., na Androidzie np. Gmail, Messenger, Drive
itp. Gdy wybierze jedng i udostepnianie sie powiedzie, Promise sie rozwigze (nie dostajemy
moze zbyt wielu szczegdtow, zwykle nie wiemy czy adresat odebrat itp., tylko ze nasz plik
zostat przekazany do systemu).

Ograniczenia: Expo-sharing dziata tylko z plikami lokalnymi i na platformach natywnych. W
przegladarzu web (PWA) Web Share API pozwala udostepniaé tylko pewne typy danych i
wymaga HTTPS — expo-sharing wykorzystuje go jesli dostepny. Jednak przegladarki nie
pozwalajg udostepniac lokalnych plikéw z URI bezposrednio, wiec ta funkcja na web moze
by¢ niepraktyczna (trzeba by wczesniej np. wgrac plik na jaki$ URL). Generalnie expo-sharing
jest najbardziej przydatny na Android/iOS. Nie umozliwia tez odbierania udostepnionych
tresci z innych aplikacji (to znaczy, nasza aplikacja nie moze zadeklarowac¢ , otwieraj ten typ
pliku w mojej aplikacji” za pomoca expo-sharing — to wymaga natywnej konfiguracji i custom
pluginéw).

3. Lokalizacja i mapy

Kolejng wazng funkcjonalnoscig urzadzen jest geolokalizacja — ustalanie pozycji GPS
uzytkownika — oraz prezentacja tej pozycji na mapach. W ekosystemie Expo mamy modut
expo-location do pozyskiwania lokalizacji oraz mozemy wykorzystaé biblioteke react-native-maps
do wyswietlania map (Google Maps / Apple Maps) w aplikacji.

3.1 Pozyskiwanie lokalizacji (expo-location)

Modut expo-location umozliwia odczyt aktualnej lokalizacji GPS urzadzenia,
subskrybowanie zmian potozenia, a takze geokodowanie (zamiane wspoétrzednych na adres i

odwrotnie). Korzystanie z niego, podobnie jak z innych, wymaga uprzedniego uzyskania
uprawnien od uzytkownika.

Uprawnienia lokalizacji: Wyrézniamy dwa rodzaje — foreground location (podczas uzywania
aplikacji) i background location (w tle). W wiekszosci przypadkdw potrzebujemy tylko tej
pierwszej (np. aby pokazac¢ na mapie gdzie jest user lub wyszukaé¢ cos w okolicy). Background
location jest potrzebna, gdy aplikacja ma sledzi¢ potozenie nawet, gdy jest nieaktywna (np.
aplikacja treningowa rejestrujgca bieg, tracker itp.). Zapytanie o background od razu jest
mozliwe na Androidzie (cho¢ lepiej najpierw foreground, a potem background), a na iOS jest
dwuetapowe jak wspomnielismy wczesniej. Expo udostepnia odpowiednio
requestForegroundPermissionsAsync() i requestBackgroundPermissionsAsync(). Na iOS, by background w
ogole dziatata, trzeba dodac do Info.plist wtasciwos¢ i wtgczyé tryb background — Expo
umozliwia to przez konfiguracje islosBackgroundlLocationEnabled: true W pluginie expo-location
oraz musi by¢ podany klucz NSLocationAlwaysAndWhenInUseUsageDescription. Bez tego i
tak nie dostaniemy zgody od Apple.

W typowej aplikacji mapowej wystarczy foreground permission.

Pobieranie biezacej pozycji: Najprostszg metodg jest Location.getCurrentPositionAsync(options).
Wywotuje ona wewnetrznie odczyt z GPS i/lub innych Zzrédet (WiFi, sie¢) i zwraca Promise z
obiektem lokalizacji. Ten obiekt zawiera m.in. wspdtrzedne coords.latitude i coords.longitude,
doktadnos¢ coords.accuracy (W metrach), a takze np. wysokos¢ altitude, predkosé speed czy
kierunek heading (gdy dostepne). Zawiera tez znacznik czasu.

Przyktad uzycia (zaktadajac, ze uprawnienie juz mamy):

const location = await Location.getCurrentPositionAsync({
accuracy: Location.Accuracy.High, // mozna Balanced, Low etc. High uzywa GPS, moze by¢ wolniejsze
maximumAge: 10000, // jesli jest ostatnia znana pozycja nie starsza niz 10s, moze jg da¢ od razu

N;

console.log("Moje potozenie: ", location.coords.latitude, location.coords.longitude);

Takie wywotanie wtgcza GPS (jesli nie byt wigczony) i moze potrwac chwile (kilka sekund)
zanim zwréci doktadng pozycje, szczegdlnie przy pierwszym uruchomieniu.

Sledzenie pozycji (watchPosition): Jesli chcemy otrzymywadé aktualizacje pozycji ciagle (np.
co okreslony dystans lub czas), uzywamy Location.watchPositionAsync(options, callback). Ta funkcja
uruchamia subskrypcje — bedzie wywotywac nasz callback za kazdym razem, gdy lokalizacja
spetni kryteria zmiany. Zwraca obiekt subskrypcji (do pdzniejszego anulowania .remove()).

Przykfad: trackowanie ruchu uzytkownika:

const subscription = await Location.watchPositionAsync(
{
accuracy: Location.Accuracy.High,
timelnterval: 5000, // co najmniej co 5 sekund
distancelnterval: 10 //lub co 10 metréw
b
(loc) =>{
const { latitude, longitude } = loc.coords;

console.log(‘'Nowa pozycja: S{latitude}, S{longitude});
// tutaj np. zaktualizuj stan aplikacji z nowymi wspétrzednymi
}
);
// ... pdzniej, gdy juz nie potrzebujemy sledzic:
subscription.remove();

W powyzszym kodzie co ~5 sekund lub co ~10 metrow (w zaleznosci co nastgpi wczesniej)
otrzymamy nowg pozycje. Opcje timelnterval i distancelnterval pomagajg ograniczyc¢ zbyt czeste
odczyty (oszczednosc¢ baterii). Samo accuracy tez wptywa — High wtgczy GPS, Balanced moze
korzystac z sieci co jest szybsze ale mniej doktadne, Low tylko sie¢ (celuje w doktadnos¢ kilku
km).

Background location: Expo-location umozliwia takze sledzenie pozycji w tle, nawet gdy
aplikacja nie jest aktywna. Realizuje sie to poprzez rejestracje zadania z uzyciem modutu
TaskManager (trzeba stworzy¢ task definicjg w kodzie) i wywotanie
Location.startLocationUpdatesAsync(taskName, options). Jesli uzytkownik nadat Allow all the time
(Always) uprawnienie i konfiguracja natywna jest odpowiednia, aplikacja bedzie otrzymywac
aktualizacje w tle, a nawet w stanie zamknietym (do pewnego stopnia — system moze je
ograniczac). To temat dos¢ zaawansowany, dlatego tylko sygnalizujemy jego istnienie. Trzeba
pamietac, ze uzytkownik widzi np. na iOS niebieski pasek, ze aplikacja uzywa lokalizacji w tle,
co moze budzi¢ obawy — dlatego nalezy zawsze wyjasnic¢ po co to robimy. Wiele aplikacji w
ogole nie potrzebuje background location — korzystajmy z tego oszczednie.

Geokodowanie: Wspomne krétko, ze expo-location ma tez funkcje
Location.reverseGeocodeAsync(coords) — zamienia wspotrzedne na czytelny adres (ulica, miasto
itp.), oraz Location.geocodeAsync(address) — odwrotnie, adres na potencjalne wspoétrzedne. To
korzysta z ustug platformy (iOS / Android) i wymaga potaczenia internetowego (na iOS uzywa
Apple Maps API, na Androidzie Google geocoding). W wielu wypadkach moze by¢ przydatne,
ale nalezy pamietaé, ze nie zawsze zwréci wynik (np. jak adres niejasny). Te funkcje nie
wymagajg specjalnych dodatkowych uprawnien poza tym, ze jesli korzystajg z lokalizacji
uzytkownika to musimy mie¢ te zgode.

3.2 Wyswietlanie map (react-native-maps)

Do integracji map w React Native standardem jest biblioteka react-native-maps. Expo
obstuguje jg (jest wymieniona jako kompatybilna, instalujemy przez expo install react-native-
maps). Pozwala ona osadzi¢ komponent MapView, ktéry wyswietli mapy Google (na
Androidzie i opcjonalnie na iOS) lub Apple Maps (domyslnie na iOS). Mozemy na mapie
umieszczaé markery, ksztatty, obstugiwac zdarzenia (tapniecia na mapie, przeciggniecia itp.).

Instalacja i konfiguracja: W trybie Expo Go nie musimy nic wiecej robi¢ — Mapy
Google/Apple powinny dziata¢ od razu (Expo dostarcza klucze API dla Expo Go). Natomiast
dla wtasnych buildéw na iOS czesto trzeba podaé klucz Google Maps API, jesli chce sie
uzywac Google jako dostawcy map (alternatywnie, mozna zostac¢ przy Apple Maps na
iPhone). Szczegdty konfiguracji Google Maps na Androida/iOS sg w dokumentacji, ale w
skrdcie: na Androidzie potrzebny jest klucz API w pliku manifest (Expo plugin maps to
ufatwia), a na iOS dodanie klucza do Info.plist i biblioteki GoogleMaps w projekcie — Expo

dostarcza to poprzez config plugin. Jednak w Expo SDK 54+ wiekszo$¢ jest automatyczna dla
standardowego uzycia (o ile nie uzywamy niestandardowych funkcji).

Uzycie MapView i Marker: Podstawowy przyktad wyswietlenia mapy z pojedynczym
markerem:

import MapView, { Marker } from 'react-native-maps';
import { StyleSheet, View } from 'react-native';

export default function MapExample({ userLocation }) {
// "userLocation’ to obiekt { latitude: ..., longitude: ... }
const region = {
latitude: userLocation.latitude,
longitude: userLocation.longitude,
latitudeDelta: 0.01, //im mniejsze delty, tym wieksze przyblizenie (zoom)
longitudeDelta: 0.01
b
return (
<View style={styles.container}>
<MapView style={styles.map} initialRegion={region}>
<Marker
coordinate={userLocation}
title="Tu jestem"
description="Moja biezgca lokalizacja"
/>
</MapView>
</View>
);
}

const styles = StyleSheet.create({
container: { flex: 11},
map: { flex: 1}

1

Tutaj zaktadamy, ze mamy juz wspoétrzedne uzytkownika (np. wczesniej pobrane przez expo-
location). Ustawiamy initialRegion mapy na obszar skupiony wokoft tego punktu. latitudeDelta i
longitudeDelta okreslajg zoom — mniejsza wartosc to blizej (0.01 ~ kilka ulic, 0.1 ~ cate miasto, 1
~ caty kraj itd.). Na mapie umieszczamy komponent <Marker> we wspoéfrzednych uzytkownika.
Ustawiamy mu title (to pojawi sie jako nagtéwek dymka po kliknieciu na marker) oraz
description (mniejszy tekst w dymku). W rezultacie uzytkownik zobaczy mape z pinezka
opisang "Tu jestem". Marker domyslnie jest czerwony (Google) lub czerwony pin (Apple).
Mozna go customizowac (prop pinColor albo wtasny obrazek jako marker).

Interakcja i kontrola mapy: Mape mozna przesuwac i skalowaé gestami multi-touch
(domyslnie wtgczone). Mozemy tez kontrolowac region z poziomu stanu aplikacji — np.
uzywajgc prop region (zamiast initialRegion) Wigzgc go ze state, ale wowczas musimy pamietaé
o aktualizacji go (bo region staje sie kontrolowany — jesli uzytkownik przewinie mape, musimy
to odnotowac by nie ,,zawiez¢” mapy do starej pozycji). Czesto stosuje sie initialRegion dla
prostego pokazu, a gdy potrzeba dynamicznie sterowac, uzywa sie referencji i metod
animacji:

e mapRef.current.animateToRegion(region, duration) lub
e na iOS mapRef.current.animateCamera(camera, duration).

Jesli chcemy pokazac biezaca pozycje uzytkownika dynamicznie, react-native-maps oferuje
takze prop showsUserlLocation={true}. To automatycznie narysuje niebieskg kropke (i okrag
doktadnosci) tam gdzie system widzi lokalizacje urzadzenia. Jednak do tego trzeba mie¢
uprawnienie i musimy wczesniej pobrac lokalizacje choé raz (na iOS inaczej nie zadziata, bo
potrzebny trigger). Gdy uzywamy expo-location do subskrypcji, mozemy w callbacku
aktualizowac¢ np. marker lub region.

Marker i inne elementy: Marker moze reagowad na tapniecia (prop onPress), moze miec
callout (dymek) bardziej ztozony — np. <Marker><Callout><Text>Jakas info</Text></Callout></Marker>
aby customizowac zawartos¢ dymka. Mozemy tez dodawac inne elementy jak <Polyline>
(Sciezki), <Polygon>, <Circle> itd. — wymagajg one odpowiedniego zasilenia danymi (listy
punktow). To juz zalezy od potrzeb aplikacji (np. trasa biegu, obrys obszaru itp.).

Mapy na réznych platformach: Domyslnie:

e Na Androidzie uzywane sg Mapy Google (wymagajg Google Play Services).

e NaiOS uzywane sg Apple Maps domyslinie, ale mozna przetaczyé na Google Maps
(ustawiajac pewne flagi i dostarczajac klucz AP1). Wiele aplikacji zostaje jednak przy
Apple Maps na iOS, bo nie wymaga to dodatkowych kluczy, a Apple Maps sg catkiem
dobre dla wiekszosci zastosowan.

e Na Web (Expo web) react-native-maps nie dziata natywnie, ale jest mozliwos¢ uzycia
np. Mapy na bazie Leaflet poprzez inny pakiet. Zwykle jednak, jesli targetujemy tez
web, to trzeba dodatkowych rozwigzan (poza zakresem tego wyktadu).

Wydajnos¢ i ograniczenia: Nalezy pamietaé, ze mapy to natywny komponent — na iOS jest to
MKMapView, na Androidzie MapView od Google. Reagujg one na style (trzeba im da¢ konkretnag
wysokosé/szerokosé). Lepiej jest opakowaé mape we view z konkretnymi wymiarami (jak
zrobiliSmy w style, flex:1 wypetnia rodzica). Rysowanie wielu markerdw (np. setek) moze
wptywacé na wydajnos¢ — biblioteka oferuje clusterowanie markeréw i optymalizacje, ale to
zaawansowane tematy.

3.3 Lokalizacja w tle (wprowadzenie)

Jak wczedniej wspomniano, mozliwe jest ciggte Sledzenie lokalizacji uzytkownika w tle.
Poniewaz to temat zaawansowany, tutaj jedynie go zarysujemy:

Expo udostepnia mechanizm zadan w tle poprzez modut expo-task-manager. Definiujemy
zadanie, np.:

import * as TaskManager from 'expo-task-manager’;
TaskManager.defineTask("lokalizacjaTlo", ({ data, error }) =>{
if (error) {
console.error("Btgd w background location task:", error);
return;

}
if (data) {

const { locations } = data; // tablica nowych lokalizacji
const loc = locations[0];
console.log("Background location:", loc.coords);
// tutaj mozna np. wystaé dane na serwer lub zapisa¢ w pamieci
}
1

Nastepnie, gdzies w kodzie (gdy chcemy zaczgé), wotamy:

await Location.startLocationUpdatesAsync("lokalizacjaTlo", {
accuracy: Location.Accuracy.Balanced,
timelnterval: 60000,
distancelnterval: 50,
pausesUpdatesAutomatically: true

N;

To spowoduje, ze aplikacja (a wtasciwie system) bedzie co pewien czas budzit naszg aplikacje
i wywotywat zadanie "lokalizacjaTlo" z nowymi danymi. Warunkiem jest posiadanie
uprawnienia Zawsze (Always) na iOS oraz odpowiednich wpiséw w Info.plist (Background
modes -> Location), a na Androidzie uprawnienia ACCESS_BACKGROUND_LOCATION (Expo
doda automatycznie jesli isAndroidBackgroundLocationEnabled: true W app.json). Trzeba sie liczy¢ z
tym, ze system moze ogranicza¢ czestotliwos¢ — np. w iOS jak aplikacja nie jest wigczona,
dostaniemy lokalizacje co ~ kilka minut nawet jak damy 1 sekunde (system dba o baterie).
Android Q+ wymaga, by uzytkownik dodatkowo potwierdzit Allow in background w osobnym
dialogu.

Przyktady zastosowan background location: aplikacje trackingowe (fitness — $ledzenie trasy
biegu, jazdy), lokalizatory znajomych/dzieci (ktore wysytajg pozycje na serwer co jakis czas),
logowanie trasy przejazdu itp. Nalezy informowac uzytkownika o takiej funkcjonalnosci, bo
ma ona wptyw na prywatnos$¢ i baterie. Z punktu widzenia sklepu — Apple moze odrzucic¢
aplikacje proszacg o Always Location bez dobrego powodu popartego opisem.

Podsumowujgc, expo-location pokrywa wiekszos¢ potrzeb geolokalizacyjnych — od
jednorazowego pobrania pozycji po ciggte sledzenie, zaréwno w foreground jak i
background. W potaczeniu z mapami, mozna zbudowac bogate funkcje zwigzane z
poftozeniem.

4. Powiadomienia (Notifications)

Powiadomienia to mechanizm informowania uzytkownika o waznych zdarzeniach, nawet gdy
nie korzysta aktywnie z aplikacji. W ekosystemie Expo obstugujemy je za pomocg modutu
expo-notifications. Dzielimy je na powiadomienia lokalne (generowane przez sama
aplikacje) i push (zdalne) wysytane z serwera do urzagdzenia. Oméwimy obie kategorie oraz
réznice miedzy platformami.

4.1 Powiadomienia lokalne (w aplikacji)

Expo-notifications umozliwia tworzenie powiadomien lokalnych — czyli np. przypomnien
wyzwalanych o okreslonym czasie lub w reakcji na jakags akcje uzytkownika (np.

powiadomienie ,zrobites 10000 krokow!” w aplikacji fitness, albo natychmiastowe
powiadomienie o otrzymaniu wiadomosci chat gdy jestesmy w innej czesci aplikacji).

Aby korzystac z expo-notifications, instalujemy paczke expo-notifications i importujemy j3. Na
iOS musimy poprosi¢ uzytkownika o zgode na powiadomienia (typowy systemowy dialog
»App chce wysyta¢ Ci powiadomienia — zezwdl/nie zezwél”). W Androidzie <13 nie byto
takiego dialogu — powiadomienia byty domysinie dozwolone (uzytkownik mogt je wytaczy¢ w
ustawieniach). Jednak od Androida 13, réwniez pojawia sie runtime permission (Expo to
obstuzy w tej samej funkgc;ji). Dlatego dobrg praktyka jest zawsze wywotac
Notifications.requestPermissionsAsync() podczas inicjalizacji powiadomien.

Prosba o zgode na notyfikacje:

import * as Notifications from 'expo-notifications';

const { status } = await Notifications.requestPermissionsAsync();
if (status !=="granted') {
alert('Nie uzyskano zgody na powiadomienia.');
// Mozna zakonczy¢ procedure lub kontynuowaé bez powiadomien

}

Na iOS mozliwe jest przekazanie opcji do requestPermissionsAsync, np. ktore rodzaje chcemy
(allowAlert, allowSound, allowBadge, provideAppNotificationSettings, allowAnnouncements). Domyslnie
jesli nie podamy, prosi o standardowe (alerty, dzwieki, odznaki). Mozna tez poprosic o tzw.
provisional permission (ciche powiadomienia, ktére nie wyswietlajg alertu, tylko pojawiajg
sie w centrum powiadomien) ustawiajgc np. ios: { allowProvisional: true } — wtedy uzytkownik nie
widzi dialogu, a appka moze wysytac ,ciche” noty, ktére uzytkownik moze wtaczyé w petni
pozniej. To juz zaawansowana mozliwosc.

Wyswietlenie powiadomienia lokalnego: Gdy mamy zgode (lub na Androidzie nie byta
wymagana), mozemy ,wystrzeli¢” powiadomienie. Sg dwa sposoby:

¢ Natychmiastowe powiadomienie — w praktyce powiadomienie lokalne teZ korzysta z
systemu, wiec nawet do natychmiastowego uzywamy metody harmonogramujacej,
tylko z zerowym opdznieniem.

e Zaplanowane powiadomienie — po uptywie okreslonego czasu lub o konkretnej
godzinie.

Expo-notifications upraszcza to poprzez jedng funkcje scheduleNotificationAsync. Podajemy
obiekt z zawartoscig powiadomienia (content) oraz trygger (trigger). Trigger moze by¢:

e okreslony w sekundach (opdznienie czasowe),

e okreslony datg (doktadny moment),

e powtarzalny (np. co dzier o0 9:00, co tydzien itp. — na iOS jest wsparcie dla
kalendarzowych powtérzen).

Przyktad: chcemy natychmiast wyswietli¢ powiadomienie z informacjg o sukcesie jakiej$
operacji:

await Notifications.scheduleNotificationAsync({
content: {
title: "Operacja zakonczona",
body: "Twoje dane zostaty pomysinie zapisane.",
sound: 'default' // dZzwiek domysiny (na Androidzie trzeba wczesniej zdefiniowac kanat z dzwiekiem lub uzy¢
domysinego)
b

trigger: null // null oznacza natychmiast (zaraz po wywotaniu)

N;

Jesli trigger: null, expo wysle powiadomienie od razu. Alternatywnie, mozna uzy¢ trigger: {
seconds: 5 } — co spowoduje pokazanie powiadomienia za 5 sekund. Ta funkcja zwraca
identyfikator powiadomienia (string), ktéry mozna uzy¢ np. do ewentualnego anulowania
przed czasem (Notifications.cancelScheduledNotificationAsync(id)).

Tres¢ powiadomienia (content): Mozna ustawic:

o title — tytut (duzy tekst, zwykle pogrubiony),

e body — tres¢,

e data— obiekt z danymi (np. jakies ID, ktére chcemy przekazaé gdy uzytkownik kliknie
w powiadomienie, by wiedzie¢ co zrobic),

e sound —nazwa dzwieku z zasobow lub 'default' by uzy¢ domysinego. (Na Androidzie
dzwieki przypisuje sie do kanatéw — expo-notifications tworzy domysiny kanat
"Default" automatycznie ze standardowym dzwiekiem. Jesli chcemy wtasne dzwieki,
trzeba definiowad kanaty).

e badge — liczba, ustawia ikonke odznaki na ikonie aplikacji (iOS).

e subtitle, body, itp. —iOS wspiera subtitle.

e attachments — mozna zatgczy¢ obraz (na iOS/Android 13+).

Na potrzeby tego wyktadu skupiamy sie na prostych polach: tytule i tresci.

Reagowanie na powiadomienia: W kontekscie powiadomien lokalnych, warto wspomnieé,
ze expo-notifications pozwala nastuchiwac zdarzen:

e otrzymania powiadomienia (gdy aplikacja jest na pierwszym planie —inaczej system
sam wyswietla, ale jak jesteSmy w aplikacji, domyslnie iOS nie pokaze banera, wiec
mozna przechwyci¢ i np. wyswietli¢ wtasny alert lub badge w Ul),

e klikniecia w powiadomienie przez uzytkownika.

Mozna uzy¢ Notifications.addNotificationReceivedListener i
Notifications.addNotificationResponseReceivedListener. W callbacku dostajemy obiekt Notification lub
NotificationResponse (zawierajgcy m.in. notification i informacje o akcji). W prostych
zastosowaniach mozemy to pomingg, ale np. jesli chcemy, ze jak uzytkownik kliknie
powiadomienie w tray, to aplikacja nawigowata do konkretnego ekranu, wtedy w tym
listenerze implementujemy takg logike.

4.2 Powiadomienia push (powiadomienia zdalne — przeglad)

Powiadomienia push to wiadomosci wysytane z serwera do konkretnej aplikacji na telefonie
uzytkownika. W odrdéznieniu od lokalnych, s3 inicjowane poza aplikacjg (np. kto$ napisze do
nas wiadomos¢ — serwer czatu wysyta push, zeby powiadomi¢ odbiorce). Realizacja push
notyfikacji wymaga integracji z ustugami Apple Push Notification service (APNs) dla iOS i
Firebase Cloud Messaging (FCM) dla Androida. Expo udostepnia tu duzg pomoc poprzez
Expo Push Service, dziatajgcy jako posrednik.

Aby skorzystac z push:

1. Aplikacja na urzadzeniu musi zarejestrowac sie po token. W klasycznym RN to
oznacza wywotanie APNs i FCM osobno, ale expo-notifications upraszcza to.

2. Ten token przekazujemy na nasz serwer.

3. Nasz serwer (lub inny mechanizm) wysyta zgdanie do serweréw Apple/Google z
informacja dla urzadzenia.

Expo Push Service skraca krok 3 — pozwala nam wystaé¢ powiadomienie do serwera Expo, a
on dalej przekaze do APNs/FCM. Dzieki temu nie musimy implementowac¢ w petni wtasnego
potaczenia z Apple/Google, co jest wygodne zwtaszcza w trybie Expo Managed.

Uzyskanie tokena Expo: W expo-notifications wywotujemy
Notifications.getExpoPushTokenAsync(options). Ta funkcja wewnatrz:

¢ NaiOS zarejestruje aplikacje w APNs i uzyska deviceToken.

¢ Na Androidzie zarejestruje w FCM i uzyska deviceToken (wymaga to miec
skonfigurowany projekt Firebase w naszej aplikacji — expo przy EAS Build to robi za
nas jesli podamy klucz server).

e Nastepnie wysle te dane do serwisu Expo i otrzyma unikalny Expo Push Token (string
zaczynajacy sie od "ExponentPushToken["...]).

Ten expo push token identyfikuje nasze urzagdzenie + konkretng aplikacje. Uwaga: Od SDK
42/43 expo wymaga podania experienceld lub projectld by wygenerowac poprawny token
(zwtaszcza w bare workflow), wiec wywotujemy to zazwyczaj jako
Notifications.getExpoPushTokenAsync({ projectld: '<GUID naszego projektu expo>' }). W managed
workflow Expo zazwyczaj sam zna ID, ale w razie problemoéw trzeba to podad.

Przyktad pobierania tokena (po wczesniejszym uzyskaniu zgody na powiadomienia):

import * as Notifications from 'expo-notifications';

async function registerForPushNotifications() {
const tokenData = await Notifications.getExpoPushTokenAsync({
projectld: '<twdj-expo-project-id>'
D
const expoPushToken = tokenData.data;
console.log("Expo push token:", expoPushToken);
// Tu zwykle wysytamy ten token do naszego backendu, np.:
await fetch('https://moj-backend.example.com/register-token’, {

method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ token: expoPushToken })
1
}

Zatézmy, ze nasz backend zapisze token powigzany z uzytkownikiem. Teraz wysytanie
powiadomienia z backendu jest proste: wysytamy zgdanie HTTP POST do endpointu Expo
https://exp.host/--/api/v2/push/send z JSON-em zawierajgcym token(y) i tres¢ powiadomienia.
Przyktadowy payload:

{
"to": "ExponentPushToken[XXXXXXXXXXXXXXXXXXXXXX]",
"title": "Nowa wiadomosc¢",
"body": "Uzytkownik Jan napisat do Ciebie: Hej!",
"data": { "conversationld": "12345" }

}

Expo Push Service przyjmie to i zwrdci tzw. tickety (potwierdzenia przyjecia). Nastepnie
asynchronicznie przekaze wiadomos¢ do APNs lub FCM. Te z kolei dostarczg jg na
urzadzenie, gdzie system wyswietli powiadomienie.

Schemat dziatania powiadomien push w Expo: aplikacja mobilna rejestruje sie i otrzymuje
token Expo Push. Nastepnie nasz serwer (backend) wysyta za pomoca tego tokena zgdanie
do Expo Push API. Expo serwer przekazuje wiadomos¢ do odpowiedniej platformy — Apple
Push Notification service dla iOS lub Firebase Cloud Messaging dla Android. W korncowym
etapie to Apple/Google doreczajg powiadomienie na urzgdzenie uzytkownika, gdzie pojawi
sie ono w centrum powiadomien. Dzieki temu mechanizmowi deweloper moze wysytac
powiadomienia push bezposrednio przez serwery Expo, zamiast integrowaé osobno z APNs i
FCM.

Warto zaznaczy¢, ze do uzycia powiadomien push w prawdziwej aplikacji produkcyjnej
trzeba rowniez:

e NaiOS: dostarczy¢ klucze/pem do Expo (w przypadku korzystania z Expo Push) lub
skonfigurowac¢ odpowiednio nasz APNs certyfikat w projekcie. Expo w trybie
managed pozwala w eas build tatwo wgraé¢ push key (.p8) do naszego projektu.

¢ Na Androidzie: w przypadku Expo Push — podac¢ klucz FCM Server Key w ustawieniach
projektu (Expo Developer Dashboard) lub przez expo-cli, aby Expo mogto wysytac do
naszych uzytkownikéw. Jesli budujemy wtasny backend bez Expo — musielibysmy w
aplikacji uzy¢ native FCM i tam generowac token itd., ale w Expo managed Expo Push
to wygodna droga.

Odbiér push w aplikacji: Gdy uzytkownik otrzyma push:

o Jesli aplikacja jest w tle lub ubita — system wyswietli powiadomienie w tray. Po
tapnieciu w nie, aplikacja sie otworzy. Mozemy przechwyci¢ to zdarzenie
(NotificationResponse) i np. nawigowa¢ do odpowiedniego ekranu (np. otworzy¢
konkretny czat).

Jesli aplikacja jest na pierwszym planie (otwarta i widoczna), to:

o Na Androidzie powiadomienie réwniez pojawi sie w tray (domysinie).

o NaiOS powiadomienie nie zostanie wyswietlone jako baner (Apple zaktada, ze
skoro jestes w aplikacji, to sama aplikacja moze to obstuzy¢ — zapobiega to
dublowaniu komunikatéw). W takiej sytuacji expo-notifications umozliwia
nam nastuch na zdarzenie odebrania powiadomienia i np. wyswietlenie
wtasnego alertu lub badge w Ul. Ewentualnie mozna wymusic iOS by
pokazywat powiadomienia tez na pierwszym planie ustawiajgc flage
shouldsShowAlert w handlerze lub konfigurujac Notification Service Extension, ale
to rzadziej sie stosuje.

Podsumowanie push: Implementacja powiadomien push wymaga potgczenia wielu
elementdéw — aplikacji (rejestracja tokenu), backendu (wysytka poprzez Expo API lub
bezposrednio APNs/FCM) i konfiguracji kluczy. Expo utatwia to ogromnie dzieki Push Service,
jednak pamietajmy o limitach:

expo push ma pewne limity szybkosci (np. nie nalezy wysyta¢ wiecej niz 100
powiadomien/sek na jedno IP, warto batchowaé wysytki).

Powiadomienia nie s3 gwarantowane — moga nie dotrze¢ natychmiast jesli
urzadzenie jest offline, albo w ogdle jesli np. uzytkownik odinstalowat aplikacje
(dlatego warto usuwac nieaktywny token, Expo zwréci btad typu
DeviceNotRegistered).

Na iOS uzytkownik moze w ustawieniach wytgczy¢ powiadomienia dla naszej appki
juz po wyrazeniu zgody, wiec warto reagowacd na ewentualne
Notifications.getPermissionsAsync() gdzie status moze przej$¢ w denied w trakcie uzywania
aplikacji (wtedy mozemy np. informowaé, ze powiadomienia sg off).

Debugowanie: W symulatorze iOS nie dostaniemy pushy (Apple nie obstuguje ich w
symulatorach), na Androidzie emulator moze otrzymac push tylko jesli zainstalujemy
tam ustuge Firebase i uzyjemy push bez expo go. Expo Go od SDK 53 nie obstuguje
pushy na Androidzie w ogdle, wiec do testowania pushy robimy wtasny Development
Build lub standalone build. Lokalne notyfikacje za to mozna testowaé wszedzie, takze
w Expo Go.

4.3 Réznice i ograniczenia powiadomien na Android vs iOS

Piszac aplikacje, warto znaé pewne roznice platformowe w systemie powiadomien:

lkony i kanaty (Android): Android wymaga, aby kazda notyfikacja byta przypisana do
kanatu (Notification Channel). Kanat okresla m.in. dzwiek, priorytet, wibracje — i
uzytkownik moze nim zarzadzaé w ustawieniach (wytgczy¢ dzwiek dla danego kanatu
np.). Expo-notifications automatycznie tworzy kanat "Default" jesli nie podamy
innego, i uzywa go. Mozemy sami utworzy¢ kanaty przez
Notifications.setNotificationChannelAsync("nazwakanatu", options). Warto to zrobié np. jesli
chcemy rézne typy powiadomien (np. ,,wiadomosci” z dzwiekiem i ,,promocje” bez
dzwieku). Ponadto, Android wymaga dodania wtasnej ikony powiadomien — inaczej
domysinie moze pokazaé biate kétko. Expo umozliwia ustawienie ikony powiadomien
W app.json (pole notification.icon).

Badges (odznaki): iOS ma natywne wsparcie tzw. badge count — liczby na ikonie
aplikacji. Android tego nie miat systemowo (niektére launchery wspieraty), dopiero
niektore naktadki. Expo-notifications pozwala uzyé Notifications.setBadgeCountAsync(n) na
i0S, a na Androidzie po prostu nic to nie robi lub korzysta z Support Lib (na nowym
Androidzie 13 sg wprowadzane tzw. notification dots, ale nie liczby).

Prezentacja gdy app w foreground: Jak juz wspomniano, iOS domyslnie nie pokaze
banera, Android pokaze (chyba ze powiemy mu w opcjach notyfikacji inaczej). Jesli
chcemy jednak spdjnie obstuzyé wewnatrz, expo-notifications umozliwia
wykorzystanie listenera i np. recznie wywotaé Notifications.scheduleNotificationAsync od
razu z otrzymanego powiadomienia (co jest troszke hack zeby wymusi¢ baner na iOS
— istnieje tez metoda Notifications.presentNotificationAsync(content) w niektérych wersjach,
ktora wyswietla notyfikacje natychmiast nawet w foreground).

Limit danych: Zaréwno APNs jak i FCM majg limity rozmiaru payloadu push. APNs
~4KB, FCM ~4KB (w przypadku expo, nas to nie obchodzi bezposrednio, bo expo
serwer powie nam jak przekroczymy). Wiec nie wysytamy ogromnych JSONOw w data.
Przyciski akcji, odpowiedzi tekstowe: Bardziej zaawansowane funkcje jak
interaktywne powiadomienia (z przyciskami akcji) wymagajg natywnych konfiguracji
(na iOS definicja kategorii, na Androidzie dodanie akcji do pendingintent). Expo-
notifications obecnie tego nie wspiera out-of-the-box, wiec w managed workflow
jestesmy ograniczeni do prostych powiadomien z tapnieciem. Jesli potrzebujemy np.
przycisku "Odpowiedz" bez otwierania aplikacji, wymaga to wyjscia poza Expo
managed.

Harmonogram powtarzajacy sie: Na iOS expo pozwala zaplanowa¢ powtarzajgce sie
powiadomienie z triggerem typu daily/weekly (np. codziennie o 9:00) — to realizuje
poprzez Calendar triggers Apple. Na Androidzie do niedawna nie byto prostego API
do powtarzajacych doktadnie co tydzien (trzeba uzyé AlarmManager), ale jesli
ustawimy trigger { repeats: true, hour: 9, minute: 0 } to powinno zadziatac¢ i tu, i tu.

Expo Go / dev builds: Jak wspomniano, w trybie czysto developerskim (Expo Go)
Android od SDK 53 nie obstuzy push (decyzja Expo ze wzgleddéw ograniczen
implementacji FCM w Expo Go), i trzeba uzywa¢ development build (ktéry jest jak
nasza wtasna aplikacja). iOS Expo Go tradycyjnie w ogdle nie wspiera push (bo
aplikacja Expo Go nie ma push dla kazdej testowej apki). Zatem do testéow push
musimy mie¢ witasny build na urzadzeniu fizycznym.

5. Demo aplikacji: aparat i mapa (praktyczne potaczenie)

Na koniec potgczmy powyzsze zagadnienia w mini-demo. Zatézmy scenariusz: tworzymy
aplikacje, w ktdrej uzytkownik moze zrobic zdjecie i zapisac je (lub wysta¢), a na innej
zaktadce podejrze¢ na mapie swojg biezacg lokalizacje oznaczong markerem "Tu jestem". To
obejmie wykorzystanie aparatu, uprawnien do kamery/galerii, zapis pliku, lokalizacje oraz
mape. Ponizej omdwienie implementacji dwdch ekranéw tej przyktadowej aplikacji.

5.1 Ekran "CameraScreen" — zrobienie i zapis zdjecia

Zatozenia: Ten ekran ma umozliwi¢ uzytkownikowi zrobienie zdjecia przy uzyciu aparatu. Po
zrobieniu zdjecia wyswietla jego podglad i daje opcje: "Zapisz" (do galerii) lub "Wyslij"
(symulacja uploadu). Jesli uzytkownik nie ma uprawnien do aparatu, pokaze odpowiedni

komunikat. Dodatkowo, dodamy przycisk do wyboru zdjecia z galerii jako alternatywe
(fallback, gdy np. kamera niedostepna).

import React, { useState, useEffect } from 'react’;

import { View, Text, Image, Button, Alert } from 'react-native';
import { Camera } from 'expo-camera’;

import * as ImagePicker from 'expo-image-picker';

import * as MedialLibrary from 'expo-media-library';

export default function CameraScreen() {
const [hasCamPermission, setHasCamPermission] = useState(null);
const [camera, setCamera] = useState(null); // referencja do Camera component
const [photoUri, setPhotoUri] = useState(null); // URI zrobionego zdjecia

useEffect(() => {
(async () =>{
const { status } = await Camera.requestCameraPermissionsAsync();
setHasCamPermission(status === 'granted');
N
L

const takePhoto = async () => {
if (lcamera) return;
try {
const result = await camera.takePictureAsync({ quality: 0.7 });
setPhotoUri(result.uri);
} catch (e) {
console.error("Error taking photo", e);
}
L

const picklmage = async () => {
const perm = await ImagePicker.requestMedialibraryPermissionsAsync();
if (perm.granted) {
Alert.alert("Brak uprawnien", "Udostepnij dostep do zdjeé, aby wybra¢ obraz z galerii.");
return;
}
const result = await ImagePicker.launchimageLibraryAsync({ quality: 1 });
if (Iresult.canceled) {
const asset = result.assets[0];
setPhotoUri(asset.uri);
}
7

const savePhotoToGallery = async () => {

if (IphotoUri) return;

const perm = await MedialLibrary.requestPermissionsAsync();

if (Iperm.granted) {
Alert.alert("Brak uprawnien do zapisu", "Nie mozna zapisac zdjecia bez dostepu do galerii.");
return;

}

try {
const asset = await Medialibrary.createAssetAsync(photoUri);
await Medialibrary.createAlbumAsync("DemoApp", asset, false);
Alert.alert("Sukces", "Zdjecie zapisane w albumie DemoApp!");
setPhotoUri(null); // czyscimy i wracamy do trybu kamery

} catch (e) {
console.error("Save error", e);
Alert.alert("Btagd", "Nie udato sie zapisac zdjecia.");
}
b

const uploadPhoto = async () => {
// Tu normalnie bytby kod wysytajacy plik na serwer, np. przez fetch / FormData.
// My zasygnalizujemy to tylko alertem:
Alert.alert("Wysytanie", "Symulacja wysytania pliku " + photoUri);
setPhotoUri(null);

}l
if (hasCamPermission === null) {
return <Text>Sprawdzanie uprawnien...</Text>;
}
if (hasCamPermission === false) {
return (

<View style={{ flex: 1, justifyContent: 'center’, alignltems: 'center' }}>
<Text>Nie udzielono dostepu do aparatu.</Text>
<Button title="Wybierz zdjecie z galerii" onPress={pickimage} />
</View>
);
}

return (
<View style={{ flex: 1 }}>
{photoUri ? (
// Po zrobieniu/wybraniu zdjecia - ekran podgladu
<View style={{ flex: 1 }}>
<Image source={{ uri: photoUri }} style={{ flex: 1 }} resizeMode="contain" />
<View style={{ flexDirection: 'row’, justifyContent: 'space-around’, padding: 10 }}>
<Button title="Zapisz" onPress={savePhotoToGallery} />
<Button title="Wyslij" onPress={uploadPhoto} />
<Button title="Anuluj" onPress={() => setPhotoUri(null)} />
</View>
</View>
)i (
// Ekran z kamerg i przyciskami
<Camera style={{ flex: 1 }} ref={ref => setCamera(ref)} />
)}
{!photoUri && (// przyciski do zrobienia lub wybrania zdjecia, gdy nie ma zrobionego
<View style={{ position: 'absolute’, bottom: 20, alignSelf: 'center' }}>
<Button title="Zréb zdjecie" onPress={takePhoto} />
<Button title="Galeria..." onPress={picklmage} />
</View>
)}
</View>
);
}

Objasnienia:

e Po montazu komponentu prosimy o uprawnienie Camera. Jesli odmowa, zamiast
widoku kamery wyswietlamy komunikat i przycisk pozwalajgcy skorzystac z

alternatywy — wyboru zdjecia z galerii (by jednak umozliwi¢ uzytkownikowi dodanie
obrazka mimo braku aparatu). To dobry przyktad fallbacku.

e Gdy uprawnienie jest, renderujemy <Camera ref={...}>. Ustawiamy ref poprzez
setCamera(ref) w atrybucie ref (takie obejscie, bo hooki z expo-camera uzyliSmy
klasycznie). Mozna by tez uzyc useRef i przypisa¢ do cameraRef.current.

e Przycisk "Zréb zdjecie" wywotuje takePhoto, ktéry korzysta z referencji kamery (camera
tutaj) i jej metody takePictureAsync. Ustawiamy jakos¢ 0.7 dla mniejszego pliku. Po
sukcesie zapisujemy URI w stanie photoUri.

e Gdy photoUri jest ustawione, zamiast widoku kamery pokazujemy podglad (Image). Pod
nim trzy przyciski: "Zapisz", "Wyslij", "Anuluj".

o "Zapisz" wywotuje savePhotoToGallery — tam najpierw prosimy o (ew. brakujace)
uprawnienie do Medialibrary, nastepnie tworzymy asset i album (album o
nazwie "DemoApp"). Jesli sie powiedzie, pokazujemy Alert z komunikatem
sukcesu i czy$cimy photoUri (wracamy do trybu kamery).

o "Wyslij" wywotuje uploadPhoto — tutaj nie mamy prawdziwego serwera, wiec
po prostu pokazujemy alert z informacjg i réwniez czy$cimy photoUri
(zaktadamy, ze po wystaniu juz nie potrzebujemy podgladu).

o "Anuluj" tez czysci photoUri (odrzucamy zdjecie i wracamy do aparatu).

e Przycisk "Galeria..." wywotuje pickimage — prosi o uprawnienie do biblioteki, potem
otwiera expo-image-picker. Jesli uzytkownik wybierze zdjecie (result.canceled false),
pobieramy asset = result.assets[0] i ustawiamy jego URI jako photoUri. To przeniesie nas
do tego samego widoku podgladu jak po zrobieniu zdjecia aparatem. Tam uzytkownik
moze zapisac je lub wysta¢ — czyli wykorzystujemy wspdlng logike. Dzieki temu
fallback "wybierz z galerii" dziata zaréwno w przypadku braku kamery, jak i normalnie
(nawet dalismy ten przycisk obok "Zréb zdjecie" dla wygody).

e Ostatecznie, jesli kamera jest aktywna (brak photouri), na dole ekranu mamy dwa
przyciski do robienia zdjecia i otwarcia galerii.

Ten ekran demonstruje wykorzystanie uprawnien (camera, media library), expo-camera i
expo-image-picker, a takze expo-media-library do zapisu. Zastosowalismy dobre praktyki:

e pytamy o uprawnienia w momencie wejscia na ekran (uzytkownik swiadomie wybrat
funkcje aparatu),

o oferujemy alternatywe (galerie) gdy brak aparatu,

e obstugujemy odmowe dostepu do galerii przy zapisie (komunikat),

¢ informujemy uzytkownika o rezultacie akcji (Alert po zapisaniu czy btedzie).

5.2 Ekran "MapScreen" — mapa z lokalizacjg uzytkownika

Zatozenia: Ten ekran pokaze mape (MapView) z markerem wskazujgcym biezgcg pozycje
uzytkownika i podpisem "Tu jestem". Po wejsciu na ekran aplikacja powinna uzyskac
uprawnienie do lokalizacji i pobrac¢ aktualne wspoétrzedne. Jesli odmowa — wyswietli
komunikat o braku dostepu do GPS.

Za pomocay react-native-maps Wyswietlimy mape i uzyjemy <Marker> aby zaznaczy¢ pozycje.

import React, { useState, useEffect } from 'react’;
import { View, Text, StyleSheet, Button } from 'react-native';

import MapView, { Marker } from 'react-native-maps';
import * as Location from 'expo-location’;

export default function MapScreen() {
const [hasLocationPerm, setHasLocationPerm] = useState(null);
const [location, setLocation] = useState(null);

useEffect(() => {
(async () =>{
const { status } = await Location.requestForegroundPermissionsAsync();
setHasLocationPerm(status === 'granted');
if (status === 'granted') {
const loc = await Location.getCurrentPositionAsync({});
setLocation(loc.coords);

}
N
L)
if (hasLocationPerm === null) {
return <Text>tadowanie...</Text>;
}
if (hasLocationPerm === false) {
return (

<View style={styles.center}>
<Text>Brak dostepu do lokalizacji GPS.</Text>
<Text>Aby zobaczy¢ swojg pozycje na mapie, wtgcz uprawnienia lokalizacji.</Text>
</View>
);
}

// Gdy mamy lokalizacje:
const region = {

latitude: location.latitude,
longitude: location.longitude,
latitudeDelta: 0.005,
longitudeDelta: 0.005

b

return (
<View style={styles.container}>
{location ? (
<MapView style={styles.map} initialRegion={region}>
<Marker coordinate={location} title="Tu jestem" />
</MapView>
M
<View style={styles.center}>
<Text>Pobieranie lokalizacji...</Text>
</View>
)}
</View>
);
}

const styles = StyleSheet.create({
container: { flex: 1},
map: { flex: 11},
center: { flex: 1, justifyContent: 'center’, alignltems: 'center’, padding: 20 }

1
Objasnienia:

e W useEffect prosimy o Location.requestForegroundPermissionsAsync. Jesli wynik to granted, od
razu wywotujemy getCurrentPositionAsync aby pobrac¢ wspoétfrzedne. Ustawiamy je w
stanie location.

e Jedli odmowa, ustawiamy hasLocationPerm na false i w render pokazujemy komunikat.
(Mozna dodac przycisk np. "Sprébuj ponownie" lub instrukcje otwarcia ustawien — tu
po prostu statyczny tekst).

e Gdy mamy dane, konfigurujemy region — dali§my bardzo mate delta (0.005 ~ 0.5 km),
wiec mapa bedzie dos$¢ blisko.

e Render: dopdki location jest null (np. trwa pobieranie), pokazujemy tekst "Pobieranie
lokalizacji...". Gdy juz jest, wyswietlamy MapView z ustawionym initialRegion.

e Marker otrzymuje coordinate={location} (czyli obiekt {latitude, longitude}) i tytut "Tu
jestem". Nie dajemy opisu (description) — nazwa wystarczy.

e Styl map: {flex: 1} sprawia, ze mapa wypetnia caty ekran.

Ta implementacja zaktada jednorazowe pobranie lokalizacji. W praktyce, jesli uzytkownik
przemiesci sie i chce zaktualizowaé, trzeba by dodac np. odswiezanie (przycisk "Odswiez"
wywotujgcy ponownie getCurrentPositionAsync i setLocation). Mozna tez byto uzy¢
watchPositionAsync i aktualizowac¢ marker w czasie rzeczywistym, ale to generuje duzo
aktualizacji i moze nie by¢ potrzebne w demo.

Dziatanie: Po wejsciu na MapScreen, jesli zgoda jest juz nadana wczesniej (np. uzytkownik
wyrazit jg kiedys), to od razu zobaczy mape z pinezka. Jesli nie, pojawi sie dialog systemowy —
po wybraniu "Zezwél" komponent sie zrerenderuje (status zmieni sie na granted) i powinna
pojawi¢ sie mapa. Jesli wybierze "Nie zezwalaj", zobaczy nasz komunikat. Aplikacja moze
dziataé dalej, tylko bez mapy (ew. moglibysmy wyswietli¢ mape centrum kraju jako tto, ale to
juz decyzja projektowa — tu po prostu nic nie pokazujemy oproécz info).

Uwaga: W app.json dla iOS powinnismy mie¢ klucz NSLocationWhenIinUseUsageDescription
(np. "Aplikacja uzywa Twojej lokalizacji do wyswietlenia Twojego potozenia na mapie.") —
inaczej App Store by nas nie przepuscit, a i system wyswietlitby domysiny mato opisowy
tekst.

Podsumowanie demo
W powyzszych dwdch ekranach potgczylismy rézne moduty Expo:

¢ expo-camera (Camera component) do zrobienia zdjecia.

¢ expo-image-picker jako alternatywa do wybrania z galerii.
¢ expo-media-library do zapisania zdjecia w albumie.

¢ expo-location do uzyskania wspotrzednych GPS.

e react-native-maps do wyswietlenia mapy i markera.

Zaimplementowalismy logike uprawnien zgodnie z najlepszymi praktykami: w kontekscie (na
danym ekranie), z obstugg odmowy i informowaniem uzytkownika. Kod zawiera tez
elementy obstugi btedow (try/catch przy foto, alerty w przypadku braku zgod).

W realnej aplikacji te dwa ekrany mogtyby by¢ czescia zaktadek (np. uzywajac React
Navigation — Tab Navigator: jedna zaktadka "Kamera", druga "Mapa"). Wymagatoby to
drobnej konfiguracji nawigacji, ale to juz osobny temat. Wazne, ze poszczegdlne
funkcjonalnosci dziatajg niezaleznie.

Testowanie: Funkcje aparatu i map wymagaja fizycznego urzadzenia lub emulatora z
okreslonymi uprawnieniami:

e Aparat zadziata na prawdziwym urzadzeniu. W symulatorze iOS kamera jest
niedostepna — expo-camera zwrdci btagd lub czarny ekran (mozna przetestowac uzycie
pickera). Na emulatorze Android mozna aktywowacé obraz z kamery (dziata jako
kamera wirtualna).

o Lokalizacja: w symulatorze iOS mozna ustawic Lokacja (Debug -> Location -> Freeway
Drive lub Custom Location), zeby symulowa¢ dane GPS. W emulatorze Android
mozna wystaé wspétrzedne przez Extended Controls. Inaczej getCurrentPosition
moze czekac wiecznie.

e Mapy: wymagajg potgczenia internetowego (pobranie map). W Expo Go lub dev build
musimy miec sie¢. Jesli nie pojawig sie kafelki mapy, moze brak klucza API (na expo
go nie powinno by¢ problemu). W debug buildach wtasnych trzeba pamietac by w
AndroidManifest wstawi¢ meta-data z APl Key Google lub uzy¢ Apple maps na iOS.

Na zakonczenie, mamy aplikacje, ktéra ilustruje praktyczne uzycie funkcji urzadzenia i
uprawnien Expo. Mam nadzieje, ze to demo wraz z wczesniejszymi objasnieniami utatwi
zrozumienie, jak w kontrolowany i przyjazny dla uzytkownika sposdb korzysta¢ z aparatow,
galerii, plikdw, lokalizacji i powiadomien w Expo/React Native. Wszystkie zaprezentowane
biblioteki w najnowszej wersji Expo SDK (2025) oferujg stabilne API, z ktérego korzystalismy.
Przestrzegajac zalecen co do uprawnien i UX, aplikacje mogg bezpiecznie i efektywnie
wykorzystywaé mozliwosci urzagdzen mobilnych.

Literatura:

1. https://docs.expo.dev/versions/latest/sdk/camera/ (Data dostepu: 1.10.2025) —
Oficjalna dokumentacja modufu expo-camera, opisujgca zasady uzyskiwania
uprawnien oraz obstuge aparatu fotograficznego i wideo.

2. https://docs.expo.dev/versions/latest/sdk/location/ (Data dostepu: 1.10.2025) —
Dokumentacja modutu expo-location, omawiajgca pobieranie biezgcej lokalizacji
GPS, sledzenie pozycji uzytkownika oraz procesy geokodowania.

3. https://docs.expo.dev/versions/latest/sdk/notifications/ (Data dostepu: 1.10.2025)
— Przewodnik po module expo-notifications, zawierajgcy szczegétowe instrukcje
konfiguracji powiadomien lokalnych oraz zdalnych (push).

4. https://github.com/react-native-maps/react-native-maps (Data dostepu:
1.10.2025) — Dokumentacja biblioteki react-native-maps, niezbednej do integracji
interaktywnych map Google i Apple oraz obstugi markeréw w aplikacjach mobilnych.

https://docs.expo.dev/versions/latest/sdk/camera/
https://docs.expo.dev/versions/latest/sdk/location/
https://docs.expo.dev/versions/latest/sdk/notifications/
https://github.com/react-native-maps/react-native-maps

